Nanoparticle-Mediated Local Delivery of an Antisense TGF-β1 Construct Inhibits Intimal Hyperplasia in Autogenous Vein Grafts in Rats
نویسندگان
چکیده
BACKGROUND Intimal hyperplasia is one of the most important causes of vascular graft failure. Numerous studies have correlated transforming growth factor-β1 (TGF-β1) with extracellular matrix (ECM) deposition, a hallmark of intimal thickening. PRINCIPAL FINDINGS In the present study, we performed immunohistochemistry, RT-PCR, and Western blot to examine the dynamic expression of TGF-β1, TGF-β1 receptor type I (TGF-β RI), matrix metalloproteinase-1 (MMP-1) and tissue inhibitor of metalloproteinase-1 (TIMP-1) during intimal hyperplasia in grafted veins of a rat model generated by grafting a portion of the right internal jugular vein to the ipisiliary carotid artery. Additionally, we determined whether nanoparticle-mediated delivery of a TGF-β1 antisense-expressing construct prevented TGF-β1 expression and intimal hyperplasia in grafted veins. In grafted veins, the expression of TGF-β1 significantly increased on day 3 after transplantation, peaked on day 7, slightly decreased on day 14, and returned to baseline levels on day 28. The positive expression of TGF-β RI in grafted veins remarkably increased on day 7, peaked on day 14, and decreased thereafter. MMP-1 expression decreased significantly, while TIMP-1 expression increased, significantly on days 14 and 28. Nanoparticle-mediated delivery of a TGF-β1 antisense-expressing construct down-regulated TGF-β1 expression and inhibited intimal hyperplasia in grafted veins. CONCLUSIONS Our findings provide further evidence that TGF-β1 plays an integral role in the development of intimal hyperplasia after vascular injury. Nanoparticle-mediated delivery of a TGF-β1 antisense-expressing construct is a feasible strategy to target TGF-β1-induced intimal thickening.
منابع مشابه
Ex vivo carbon monoxide delivery inhibits intimal hyperplasia in arterialized vein grafts.
AIMS Veins are still the best conduits available for arterial bypass surgery. When these arterialized vein grafts fail, it is often due to the development of intimal hyperplasia (IH). We investigated the feasibility and efficacy of the ex vivo pre-treatment of vein grafts with soluble carbon monoxide (CO) in the inhibition of IH. METHODS AND RESULTS The inferior vena cava was excised from don...
متن کاملRole of TGF-β1/Smad3 Signaling Pathway in Secretion of Type I and III Collagen by Vascular Smooth Muscle Cells of Rats Undergoing Balloon Injury
Antisense Smad3 adenoviral vectors were used to transfect vascular smooth muscle cells (VSMCs) from rats with balloon injury or infused into the rat balloon-catheter injured carotid arteries, and the role of TGF-β1/Smad3 signaling pathway in the secretion of type I and III collagen by VSMCs following balloon injury was investigated. Antisense Smad3 adenoviral vectors were used to transfect thes...
متن کاملCollagen External Scaffolds Mitigate Intimal Hyperplasia and Improve Remodeling of Vein Grafts in a Rabbit Arteriovenous Graft Model
Objectives. The aim of this study was to test the effects of collagen external scaffold (CES) in intimal hyperplasia of vein grafts and explore its underlying mechanisms. Methods. Thirty-six New Zealand white rabbits were randomized into no-graft group, graft group, and CES group. The rabbit arteriovenous graft model was established. In CES group, the vein graft was wrapped around with CES. The...
متن کاملTacrolimus inhibits intimal hyperplasia in arterialised veins in rats.
OBJECTVES We investigated whether tacrolimus (FK506) can inhibit neointimal formation in arterialised vein grafts in rats. METHODS Lewis iliolumbar veins were implanted into the abdominal aorta of isogeneic rats. Animals in the treatment groups had daily intramuscular injections of tacrolimus at 0.2 mg/kg (group B) and 0.1 mg/kg (Group C), respectively. The control group A had no treatment. L...
متن کاملMechanisms and prevention of intimal thickening of the autogenous vein grafts--possible involvement of nitric oxide--.
Platelet thrombosis, intimal hyperplasia, and the progression of atherosclerosis are the most important factors determining the patency of vein grafts for arterial occlusive disease. Interactions between aggregating platelets and the vessel wall play an important role in all of these processes. The endothelium modulates the underlying vascular smooth muscle by releasing nitric oxide (NO), a pot...
متن کامل